An Algorithm for the Six Most Probable Causes of Fogging

- (1) The sensitizer is already decomposed
- (2) There is a hostile chemical in the paper, reducing the sensitizer
- (3) The safelighting is inadequate under the conditions of working
- (4) The mask or negative is not dense enough in its maximum value
- (5) The wet chemistry is faulty, chemically reducing sensitizer
- (6) The clearing procedure is inadequate, leaving residual iron, etc.

Compare a border region of the sensitized area - coated, but masked during exposure - with the margin of uncoated paper, and answer the following questions in sequence:-

Fog apparent on coating?	YES \rightarrow <u>Sensitizer decomposed (1)</u> or
NO ↓	Very hostile chemical in paper (2)
Fog appears during drying?	YES → Fog if dried in total darkness?
NO ↓	YES ↓ NO ↓
	Hostile chemical in paper (2) Bad safelight (3)
Fog apparent after exposure?	YES → Mask/neg not dense enough (4) (POP)
NO ↓	
Fog after wet processing?	YES \rightarrow Sensitizer decomposed (1) (DEV) or
	Faulty safelight (3) (DEV) or
NO ↓	Mask/neg not dense enough (4) (DEV) or
	Wet chemistry faulty (5)
Stain of sensitizer after wash?	YES \rightarrow Clearing procedure inadequate (6)
NO ↓	

Stain in <u>un</u>coated areas of paper? YES \rightarrow <u>Wet chemistry contaminated (5)</u>

Notes

It is important to distinguish <u>Fog</u> (unwanted residual image substance) from <u>Stain</u> (unwanted other residual chemicals, especially ferric salts). These are usually distinguishable by different colours - the former grey, the latter yellow.

Fault (4) can be detected by including a small area of high UV blocking - 'Rubylith' - for comparison with the maximum density of the negative.

Some 'tests' depend on whether the process is print-out (POP) or development (DEV). e.g. Fogging due to a faulty safelight may not be visible until wet processing is complete, especially for development processes.